Over the past two decades, Long Short-Term Memory (LSTM) networks have been used to solve problems that require modeling of long sequence because they can selectively remember certain patterns over a long period, thus outperforming traditional feed-forward neural networks and Recurrent Neural Network (RNN) on learning long-term dependencies. However, LSTM is characterized by feedback dependence, which limits the high parallelism of general-purpose processors such as CPU and GPU. Besides, in terms of the energy efficiency of data center applications, the high consumption of GPU and CPU computing cannot be ignored............
Loading....